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Monte Carlo simulation of the nematic-isotropic transition in an isothermal-isobaric ensemble
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Monte Carlo simulation of a system consisting of 512 cylindrically symmetric particles interacting with each
other via a potential which has an isotropic, density dependent part as well as an anisotropic part has been used
to simulate the nematic state. The usual Metropolis algorithm is used and the particles are allowed to have
translational degrees of freedom along with the orientational one. The simulation has been carried out in an
isothermal-isobaricN PT) ensemble and the multiple histogram technique of Ferrenberg-Swendsen with ap-
propriate modification for th&l P T ensemble has been used. The results reveal realistic values of the pseudo-
spinoidal temperature and pressure as well as that for the pressure dependence of the nematic-isotropic tran-
sition temperature.
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[. INTRODUCTION into consideration an isotropic, density dependent component
of the molecular interaction. This is an improvement over the
The Maier-Saup€éMS) model[1] of nematic liquid crys- MS theory which considers only the orientational part of the
tals has been successful in explaining the basic features afteraction between the molecules and hence is unable to
the nematic-isotropic phase transition. The Lebwohl-Lashepredict the density variation observed at the NI transition.
(LL) model[2] is the lattice version of the MS model where Also no change ifT, with pressure, which is easily observed
the cylindrically symmetric particles are confined to the sitesexperimentally, is either explainable in terms of the MS
of a cubic lattice and interact with the nearest neighbors witttheory. The inclusion of the density dependent, isotropic in-

the Hamiltonian given by teraction in the nematic Hamiltonian resulted in great im-
provement in the predicted value {fT~—T.)|/T. and the
H=—EZ P,(cos6;), 1) right magnitude of the density variation at. Also the
i

theory resulted in a realistic prediction of the quantity
dT./dP, whereP is the pressure. It may be noted that these

whereP; is the second Legendre polynomial afigl is the  improvements were made while still working within the
angle between the symmetry axes of the molecules at thigamework of the mean-field theory where the fluctuations in
nearest neighbor siteésandj. The quantitye is a strength the neighborhood of . do not play a dominant role.
factor. The LL model does not take into account the coupling One motivation behind the present work has been to per-
between the translational and the rotational degrees of frederm MC simulation by including an isotropic, density de-
dom between the molecules which is always present in a regendent term in the Hamiltonian besides the usual aniso-
nematic. In spite of this shortcoming, the LL model has beertropic interaction where the particles are not fixed in any
investigated by a number of researchers. Fabbri and Zannotittice and are allowed to have translational degrees of free-
[3] have performed Monte CarlgMC) simulation in this dom. One can then see directly, without the approximations
model for a lattice size up to 30Subsequently Zhanet al. intrinsic in the mean-field theory, the effect of inclusion of
[4] investigated system size up to®28sing this model and the isotropic part of the interaction on the different features
have performed finite size scaling to determine the thermoef the nematic isotropic transition. For this purpose we have
dynamic limit of the transition temperature. More recently performed MC simulation in an isothermal-isobaric en-
Priezjev and Pelcovitgs] worked on lattice of size up to 70 semble(NPTensemblginstead of the usudVT (canonical
which vastly improved the statistics of the finite size scalingensemble. This closely resembles the general experimental
they performed. situation where the pressure is kept constant and the volume

One puzzling aspect of the nematic-isotrof\) transi- is allowed to change freely. More than two decades ago
tion has been the smallness of the quaniffy —T¢)|/T., Luckhurst and Romanp7] performed arNP T MC simula-
whereT, is the NI transition temperature afid is the limit  tion in a system consisting of 256 cylindrically symmetric
of supercooling of the isotropic liquid. Experimentally one particles with an isotropic part included in the potential
observes this quantity to be0.1% while the theoretical pre- which also consisted of an anisotropic part. The particles
dictions [1] have been one or more orders of magnitudewere not confined to a lattice and were allowed to have trans-
higher. Zhanget al. [4] in their simulation on the LL model lational displacements in addition to the orientational one.
have estimated that this quantity ¥0.5% which may be Although the statistics of the work was not very good the
termed moderately good. No estimate of this quantity issimulation exhibited a weakly first order nematic isotropic
however available from the work of Priezjev and Pelcovitstransition.
[5]. We have performed thePT MC simulation in a system

Taoet al. [6] reported a work on an extended mean-fieldconsisting of 512 particles where each particle was allowed
theory of the nematic-isotropic transition. These authors tooko interact with all other particles. The particles were allowed
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to have translational degrees of freedom in addition to the 0.05

usual orientational one. Although our system size is not very 0045
large, the work involved a considerable amount of computa- 0.04 -
tion as large number of interactions had to be taken care of 50'035 -
and we have applied the multiple histogram reweighing tech- = 003}
nigue which was first suggested by Ferrenberg and Swendsen £0.025
[8]. The method had to be slightly modified so as to enable 0.02 -
us to work in aNPT ensemble and the details are provided 0015
in the following sections. Actually our work which is an 001
elaborated example of the application of multiple histogram 0.005

reweighing in NPT ensemble, may be extended to perform 0
more extensive and useful work in similar or other systems.
This is the other motive behind the present work.

0-05 T T T T T T T T
IIl. THE POTENTIAL USED IN THE PROBLEM 0.045 oo
AND DEFINITION OF RELATED THERMODYNAMIC 004 8.20 -1
QUANTITIES S0 .30 -]
= 0031 040 ----- E
Monte Carlo simulation was performed in a system con-  go02s} 843 -]
sisting of 512 particles using the usual Metropolis algorithm £ o2} 260~
[9]. The potential used is of the form 0.015 0.80 -
001 | .
U=Uq+U,, 2 0.005 1
_ ) ) _ ) ) 0 s . )
whereUy, is the isotropic part of the interaction and is noth- -58 -6 4 66 -6
ing but a Lennard-Jond&.J) potential which can be written E
as
0.06 T T T T T .
P
Uo(rij) =4€{(alrj) 2= (alri)®}, 3 ©
0( IJ) {( |]) ( IJ) } ( ) 005 T=10 %(5;% —
wherer;; is the intermolecular separation between tkie 004 gf;gg -
and jth particles respectivelyy being the separation where %’ LT
U, vanishes and is the strength parameter. The anisotropic 5003} | 7230
part of the potential is taken as i 7.0~
0.02 | : .
| 7800
Ua=—4Ne(olr;))Py(cosb;)), (4) ool 110.000 =
o} '.\‘ N
where P,(cos#;) is the second Legendre polynomidl; 0 R N
-6 —75 -85

being the angle between the symmetry axes ofti@ndjth
particles,\ is the anisotropic parameter whose value is cho-
sen to be 0.15. Such a value kfhas been found to be

E

FIG. 1. Histograms for reduced energy obtained in simulations

optimum because smaller values)otioes not give rise to a (i), (i), and(iii), respectively.

liquid crystalline phase above the melting point and for

higher values an orientationally ordered phase is stable up twhich can also be evaluated from fluctuation as

the boiling point[7]
We define the reduced internal energy per particieand

L (H)—(H*)?)

the reduced enthalpy per partid as Cp T*° (8)
E*=E/Ne, ) whereT* (=kT/¢) is the reduced temperature.
The isothermal compressibility is given b
H*:E*+P*V*’ (6) p y g y
1 d
where P*(=Pd3/€) and V*(=V/No®) are the reduced KT =—— gV 9
V

pressure and reduced volume, respectivelgind o are the
parameters which appear in the Lennard-Jones potential
Eq. (3). The specific heat per particle at constant pressure
given by

Ch=(H"), ™

021709-2

%{he conventional long range order parameter is given by

(P,)=3(3cogh—1), (10

where @ is the angle that a molecular symmetry axis makes
with the preferred direction of orientation which was ob-
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0.16 . TABLE I. The autocorrelation time§n number of MC sweeps
0.14 0';[00__ for reduced energyE*), order parameter{P,)) and (v*) for all
o012 8738 temperatures and pressures.
: 0.735
z 0l §%%(5)E'_': P*=0.1
%o.os e T* 0.700 0.720 0.730 0.735 0.740 0.745 0.75
£ 0.06 3455 7(E*) 2385 3006 6555 8163 8550 14522 28117
004 74 m((Py)) 3602 4855 9456 10336 11994 18065 38337
' 7(V*) 1800 2288 4564 6453 7867 9950 15986
0.02 1 T 0.755 0.760 0.765 0.770 0.775 0.780
0 0% 7(E*) 23933 14578 6369 2166 1242 1011
7((P,)) 29214 22653 13188 11142 8950 6859
7(V¥) 11056 6739 4367 2706 1731 1235
5 T*=0.77
0.10—] p* 010 020 025 030 035 040
820 r(E*) 2166 8127 25342 49253 63284 31466
2 9391 m((P,)) 11142 19272 38416 64453 78731 41825
2 048~ 7(V¥) 527 933 5282 11673 26835 18290
2 050 p* 045 050 060 0.70 0.80
0.80-] 7(E*) 20167 16686 14147 13186 6618
| 7((P,)) 29632 19613 18584 17180 8194
7(V¥) 10617 7268 5725 3914 1104
0.7 =10
p* 5.000 5.500 6.000 6.500 6.750 6.875
7(E*) 1102 1419 3135 10451 11880 12725
0.14 — — 7((P,)) 3593 5784 8610 15047 16235 17659
oLzl © o 7(V¥) 423 746 1178 2039 3157 5294
T=10 i 200 p* 7.000 7.250 7.500 7.600 7.750 7.900
= O 163007 7(E*) 13946 11025 8983 7013 5930 5260
= 0.08 P 7((P,)) 18497 14872 11345 10024 9047 8161
£ 006 - 7(V¥) 9846 7102 4672 4103 3100 2478
& ! 7600 -
L7750 -+
0.04 YEOTRE
0.02 i i of atoms a distanceapart from a given atom compared with
by the number at the same distance in an ideal gas at the same
0 07 08 density.
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FIG. 2. Order parameter histograms for simulatiéins(ii), and

(iii ), respectively.

IIl. COMPUTATIONAL DETAILS

In the simulation we have performed in an isothermal-
isobaric NPT) ensemble, the number of particlbs pres-

tained by maximizing P,) [3] and the average is over the syrep and temperatur@ were kept fixed and the volumé
entire sample. The order parameter susceptibility is definegs the system was allowed to change. Thuiparticles are
in terms of the fluctuations of the order parame(@s) as placed in a cubic cell with the values of pressure and tem-
) 5 perature assigned. The configurational average of an observ-
» ~ ((P2)—(P2))
o—— . -

(11) ableA is given by
T*

The second rank angular correlation function is given by

fdeexp(—BPV)VNf dr A(F)exp(— BU(T))

0

(A)= 5 ,
(13

GZ(rij):<P2(C050ij)>rij1 (12

where ¢;; is the angle between the symmetry axes between _ _ _ . .
the ith and jth particles separated by a distange. The Wh_ereZ is the C(_)nf|gurat|onal part of the partition function
radial distribution functiorf10] g(r) is defined as the prob- Which can be written as

ability of finding a pair of particles at a distanceapart,
relative to the probability expected for a completely random
distribution at the same density. It is nothing but the number

z:fdVexq—ﬁPV)fdrexq—ﬁU(r)], (14)
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FIG. 3. Reweighed values of reduced energy and reduced en-

thalpy for the simulations indicated. lib) the lower scale and the . . .
scale on the left correspond T =0.77 and the top scale and the | FIG. 4. Reweighed values of order parameter for the simulations

! . indicated. In(b) the lower scale and the top scale correspond to
right scale correspond ©* =1.0. T*—0.77 andT* = 1.0, respectively.

where3=1/KgT, Kg is Boltzmann’'s constany is the vol-

ume andU is the potential energy of the system. equal. The enthalpy change in moving from théh state to
The Metropolis algorithm is followed by generating a thekth state,6Hy, is given by

Markov chain in which a new state is generated by giving a

particle a random translational and orientational displace- SHym= 0Uym+ P(Vi— V) —NB NV /V,,) (19

ment along with a volume change by changing the box

length randomlyf10]. The changes in the box length is given
by 9 10 g g g while the moves are accepted with a probability equal to

min[1,exp(BoH,m) 1.
Lo=Lp+ dlmad 26— 1). (15 Initially the 512 particles were placed on the sites of a
simple cubic lattice, interacting through purely LJ potential
The positional coordinates are then scaled according to thieq. (3)] and the reduced pressuR¥ was set at 0.1. Each
prescription given by particle in the box is allowed to interact with every other
~ . particle. A move was considered as the change in the particle
Fin=Timbn/Lm, 18 coordinates along with with the change in the box length.
etropolis algorithm was followed along with periodic
oundary conditions and minimum image conventiphg].
Initially the system was heated f6* =3.0 and about 10
configurations per particle were generated for equilibration
Fi =T+ 5rmax(2§i —1). 17) an_d to mqke the centers of mass of the particles rar_ldom. The
anisotropic parfEq. (4)] was added to the pure LJ interac-
While the changes in the orientational coordinates are givetion, keeping the symmetry axes of all the particles parallel.
by The nematic sample was cooledTid=0.7 and an equilibra-
R tion run of length 10 configurations per particle was taken.
& k=6 mt 00nma2&—1) (18  Then the system was heated in steps upl'te=0.78 and
equilibration runs of about same length were taken for each
where the components 6f are the normalized direction co- temperature. The starting configuration for each temperature
sines and those &f; are the random numbers in the interval was taken from the final configuration of preceding lower
(0,1). The values ofSr 44, 00max and 8l .« are chosen so temperature. The histograms for energy, order parameter and
as to make the acceptance-rejection ratio of the moves nearnlyolume were generated for each temperature.

wherei=1,512. Changes in the positional coordinates of th
ith particle while going from thath state to théth state are
given by the prescription

021709-4
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FIG. 5. The free energy plotted against reduced energy and
order parameter in simulatia(n).

The MC simulations for pressure variation were per-
formed for two sets of temperatures. First, keeping the re-
duced temperatur€* =0.77 fixed, the reduced pressure was
increased fromP* =0.1 to P*=0.8. The system was then
heated to a higher temperaturé&= 1.0 and keeping the tem-
peratureT* =1.0 of the system fixed the reduced pressure
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FIG. 6. The free energg plotted against reduced energy and
order parameter in simulatiafii).

g, INL(E,V)exg K(E+ PV)]

S

m=1

was increased fronP*=5.0 to P*=10.0. In both cases where the free energfy, is given by

equilibration runs of length T0configurations per particle
were taken and for each pressure histograms for energy, or-
der parameter and volume were generated. The starting con-
figurations at each pressure were taken from the final con-
figurations of the preceding lower pressure.

exp{fn}=§ g P(E,V,K,)

. (20

NG eXd Kn(E+ PV) — f]

(21)

the values off , could be obtained self-consistently by iter-

The various thermodynamic quantities were computed usting Ed.(20) and(21). Eitherp(E,K) or p(V,K) can now
ing the histogram reweighing technique of Ferrenberg an®® obtained by summing(E,V,K) over V or E, respec-

Swendsen8]. In this work we have applied the above men-
tioned technique for the process involving temperature varia:
tion at a fixed pressure as well as the reverse process.

TABLE Il. Pseudospinoidal temperatures and pressures obtained
V\f[eom energy and order parameter data for simulatiprand (ii ).

summarize below the essential equations for the evaluation

P*=0.1
of various averages in our simulation.

In case of temperature variation where the pressure of thé from f vs E* from f vs (P)
system is kept unchanged, suppose Bitonte Carlo simu-  Tec 0.7545 0.7539
lations have been performed at temperaturs,n T 0.7553 0.7580
=1,... R and the data has been stored as histogram$_ 0.7539 0.7500
{N,(E,V)}, with the total number of configurations is, T™=0.77
==R_|N,. We define a quantitg,=1+2r,, wherer, is p from f vs E* from f vs (P,)
the autocorrelation time arki= — 1/T where we have setthe p_ 0.373 0.345
Boltzmann constant equal to 1. Then the essential multiplg+ 0.393 0.385
histogram equation for the probabiliff E,V,K) is written = p- 0.365 0.319

as

021709-5



A. PALAND S. K. ROY PHYSICAL REVIEW E69, 021709 (2004

50 . T . .
451 @ 3
40 '
35 FA
. 30
Q
25

(PO
.
]
<
—
1

bl PN

) ) ) ) 1 1 -
¥ o om0 074 075 076 077 078 07 071 072 073 074 075 076 077 078

40

10
35 9
30 8
25 7
U20 ><°6
15 5
4

10
3

5
2
&1 02 03 04 _ 05 06 07 08 b
p )

FIG. 7. The SpeCiﬁC heat at constant pressure plotted aqa)nst FIG. 8. The order parameter Susceptibim p|0tted agains(a)

temperature antb) pressure. Ir@) the solid line represents ti&} temperature andb) pressure. In(b) the lower scale is forT*
obtained fromdH*/dT* and the dashed curve is the same obtained— (.77 and the top one is fa* = 1.0.

from fluctuations in enthalpy. Iiib) the solid curve which repre-
sents theC?, for T*=0.77 has the pressure given by the lower scalego the determination of the order parameter the essential

while the dashed curve foF* =1.0 has the pressure given by the multiple histogram equation can be written as
upper scale.

tively, and the average value of any operatortoandV can
accordingly be evaluated as a functionkaf
In order to apply the multiple histogram reweighing tech- p(E,V,(P,),P)=

R!
> 9, Ny (E\V,(Po))exd K(PV)]
n'=1

nigue in case of the determination of the order parameter % 1 ;
(P,) the essential multiple histogram equation can be modi- = N Gy €XHA K (P V) = i ]
fied as ) (24)

R . .
where the free energfy,, is given as

> 9n 'Na(E,V.(P2))exi K(E+PV)] "

=1

n .
P(E,V,(P2),K)= R ’ s ss 6 &5 1 15 s
-1 T T T l T M
2, On'eXHKn(E+PV)~fr] 0.16 o o028
(22) o014k {0.027
T J0.026
where the free energly, is given as 012 {0025
H0.024
0.1
exp{f}=2 2 > p(EV,(Py) Ky (23 L 0o
E V (P 0.08 ~, 0022
. : —0.02
As above p({(P,),K) can be obtained by summing 0 02 03 04 05 06 07 08 0.9021

p(E,V,(P,),K) overE andV . P

In case of pressure variation where the temperature of the F|G. 9. The isothermal compressibility; plotted against pres-
system is kept constanR’ Monte Carlo simulations have sure. The lower scale and the scale on the left corresporid to
been performed at different pressu@g ,n'=1,... R'. =0.77 and the top scale and right scale corresporitfte 1.0.

021709-6
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TABLE lIl. Transition temperatures and pressures obtained by 35 T T . T T T T
different methods. 3L
P*=0.1 25k
dH*/dT* C§ (fluctuation) xo  d(P,)/dT* o 2F
T, 0.7530 0.7501  0.7509  0.7520 k=3
T*=0.77 L5F
C§ (fluctuation) Xo Ky 1L
P, 0.454 0.397 0.388
*=1.0 0.5F
C§ (fluctuation) Xo Ky o .
P, 7.314 7.197 7.070 0 0.5
35 T
expfo}=> X > p(EV(Py),Py). (25 3t
E V (P
25+
IV. RESULT AND DISCUSSION % 2r
1.5¢F

The Monte Carlo simulations we have performed essen-
tially consist of three parts. In the first pai) the reduced 1+
pressure was kept fixed Bt =0.1 and the reduced tempera-
ture was varied fronT*=0.70 to 0.78. In all 13 tempera-
tures were used for simulations in this range. The se¢ohd L —
and the third(ii) parts of the simulation involve variation of
pressure keeping the temperature fixedat&0.77 and 1.0,

respectively. The pressure was varied in the ranges 0.1 to 0.8 4 '
(11 valueg and 5.0 to 7.912 value$, respectively. In each 35F
simulation the histograms were generated for the reduced 3t
energyE*, the reduced volum¥* and the order parameter 25l
(P,). In Figs. 1 and 2 some of these histograms are shown. _

Figure Xa) displays the histograms for the d@t where the %l
pressure is held fixed @&* =0.1 and the histograms in the L5}
neighborhood ofT* =0.75 show the evidence of sampling 1
between two phases. The situation is similar for the histo- 05k
grams in Fig. 1b) where the pressure is varied and the tem- ,
perature is kept fixed at 0.77. FiguréclLshows the energy 0 05

histograms fofT* = 1.0 and we note here that there is a large
gap for the pressure between 7.9 and 8.0 and the histograms FIG. 10. The radial distribution functiog(r) for different tem-
for P*=8.0 and 10.0 presumably represent the solidifiedperatures and pressures.
phase which developed at high pressure. Figuye hows
the order parameter histograms fof =0.1 where tempera- the simulationsi), (ii), and(iii ), respectively while those for
ture is varied. Figures(B) and Zc) again show the order the order parametéiP,) are depicted in Figs.(d) and 4b).
parameter histograms fof* =0.77 andT*=1.0 and here The error in estimating the probability(S,K) in the histo-
pressure is the parameter which is varied. grams is given by

In order to perform the multiple histogram reweighing,
which we have already discussed in detail, it is necessary to
determine the relevant auto-correlation times. We have deter-
mined these using the method outlined by Madras and Sokal
[12] and the results are shown in Table I. Figut@3nd  with Sbeing an observable like the energy, order parameter,
3(b) show the reweighted ener@y* and the enthalpii* for  or the volume andg,=27,+1, 7, is the autocorrelation

time for thenth simulation. These errors have a peak value
TABLE IV. The transition temperature at different pressures ob-—39 for Monte Carlo simulation§) and(ii) and~1.5% for

tained from the peak positions of the derivatives of enthalpy CUrvesjii ). For the order parameter and volume histograms the er-
rors are similar.

-1/2

op(S,K)= P(S.K), (26)

; 9, "Nu(S)

* *
0T753 0P100 The free energy like quantith which is equal to the
0.770 0.401 negative logarithm of the probabilitp(S) obtained from
1.000 7.130 reweighing, was also determined. It is well known in the

literature of the Monte Carlo simulatidiil,13 that a double

021709-7
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0.9 as well as from fluctuations of enthalpy and these are shown
08 in Fig. 7(a). The peak positions which may be taken as the
o7k transition temperaturesT.=0.7501 (fluctuation and T,
06l =0.7530(derivative, differ by about 0.4%, while the peak
o5l heights are not in good agreement with each other. The order
g parameter susceptibility, plotted againsT* for P*=0.1is
O 04r shown in Fig. 8a). The peak position of this suggests a tran-
03r sition temperaturd .= 0.7509.
02r CF obtained from fluctuation fol* =0.77 andT*=1.0
o1} are shown in Fig. (b). The peak positions which indicate the
O respective transition pressures are givenHy= 0.454 and
’ P.=7.314, respectively. The order parameter susceptibility
xo for T*=0.77 andT*=1.0 plotted against pressure is
0.7 T T T T T . shown in Fig. 8b) and the transition pressures are given by
o6l L® P ] P.=0.397 andP.=7.197, respectively. Finally the pressure
T=077 7 p— variation of the isothermal compressibilik; for these two
05F 8: temperatures are shown in Fig. 9 and these suggest the tran-
_ 04} 0. sition pressures to b&.=0.388 andP.=7.070, respec-
gﬁ 03l tively. The transition temperatures and pressures are depicted
’ in Table IIl. The significant difference in the transition pres-
02 sures is believed to be due to finite size effects. It is expected
o1l that in the thermodynamic limit the differences R ob-
tained by different methods would tend to disappear.
%3 We have evaluatel{ T — T,)|/T. from the knowledge of
the values of the transition temperatuf€l " —T.)|/ T, was
038 : : : : : : found to be 0.1% and 0.5% for the temperatures determined
o7l 51;*0__ from the energy and order parameter data wHi(&~
) 8751 —To)|/T, was found to be 0.08% and 0.5%, respectively.
06r 7991 The MS theory, it may be recalled, yields values of these
05} é;gﬁ.‘..‘-' quantities to be~10% while the extended mean-field theory
S o4t 15004 of Taoet al. gives|(T~—T¢)|/Tc~0.1%. In a similar fash-
o3l ion we have also determingdP~—P.)|/P. and these are
oal 5.3% and 2.2% for energy data and 11.5% and 7.6% for the
) order parameter data respectively. To our knowledge, no ex-
01r perimental results are available for these quantities and we
A5 are thus unable to compare these with that happens in real

systems. From the results shown in Table IV, we have esti-
mated the pressure dependence of transition temperature.
dT*/dP* turns out to be 0.0347, which when translated to
dT/dP  for N-cp-methoxybenzyliden@-butylaniline
(MBBA) (for which ¢=0.84x10 ° m), turns out to be

well structure of the quantityA characterizes a first order K ithouah he higher side this is of th
transition and the external parameters such as the tempera-t20 K/kbar. Although on the higher side this is of the same

ture or pressure may be tuned to obtained the precise val¥der of magnitude of what is found in most nematics viz
of the parameter where a phase transition takes place. Th —40 K/kbar. . . . P
occurs when the two wells in the free energy like quantity 1 ne radial distribution function for simulations), (ii),
are equally deep. Further information such as the pseud@"d (L") are shown in Fig. 10. Itis evident from the results
spinoidal temperature or pressu@s the case may benay  [of T" = 1.0 that the peaks aj(r) sharpen foP* =8.0 per-
be obtained by fine tuning of the parameters so as to mak@@ps indicating §0I|d|f|ca§|0n of the sar_nple. The plots of the
one of the minima of just disappear. In Figs.(8 and 5b) angular correlation functhn}z(r) for dlstances up to half
we have shown the plots of the quantyobtained from the ~ the box length are shown in Fig. 11. In Figs(iland 11c)
energy and the order parameter histograms and have aldo'S Seen that for low pressurés,(r) decays to zero indi-
determined the pseudospinoidal temperatdresandT ™. In cating Ios_s of long range order while the order increases with
Figs. §a) and Gb) are shown the identical quantities ob- INcréase in pressure. Far =1.0 andP* =8.0 and 10.0 the
tained from the energy and order parameter histograms arfgagnitude ofG,(r) decreases very little and these pressures
the transition pressure as well as the pseudospinoidal preBr€sumably characterize the solidified phase.
sures were determined. The pseudospinoidal temperatures
and pressures are listed in Table II.

The specific heat per particle at constant pres@frevas In the isothermal-isobaric simulation we have performed
determined from the temperature derivative of the enthalpyn the off-lattice model, which has closer resemblance with a

FIG. 11. The angular correlation functida,(r) plotted up to
half the box length for a number of temperatures and pressures.

V. CONCLUSION
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real nematic than the simple Lebwohl-Lasher model has, onthen performing finite size scaling. It may therefore be stated
would expect that the values ofT=—T.)|/T. should be that the pseudospinoidal temperatures we obtained using a
close to 0.1% as it happens in a real system. As we havsingle lattice of relatively much smaller size indicate that the
already mentioned, in their MC simulation Zhargal. [4] use of particles having translational degrees of freedom in
obtained values for these0.5% using the simple Lebwohl- the NPT ensemble is a far better approximation of a nematic
Lasher model. Our results from energy data yield values ofhan the Lebwohl-Lasher lattice model, as indeed it should.
0.1% and 0.08% fof(T*—T.)|/T. and|(T~—T)|/T, re- We have thus demonstrated that the method of multiple
spectively, which are good while those quantities evaluatedhistogram reweighing in an isothermal-isobaric ensemble
from the order parameter give a somewhat higher value ofan reveal a significant amount of information about the NI
0.5% for both the quantities. This may perhaps be attributetransition. But in view of the huge amount of CPU time
to the small system size we have used. In order to test thimvolved, to extend this work to bigger systems, one would
finding of Taoet al. [6] that it is the density dependent term need to truncate the range of interaction and apply necessary
in the potential, rather than the fluctuations, which is responeorrections for that. This is however fairly straightforward
sible for the closeness of* to T, one must perform the and should not cause any problem.

simulation using the method described in this paper using

bigger lattices and perhaps must do the finite size scaling in ACKNOWLEDGMENT

order to extract the thermodynamic limits of these quantities.
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