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Monte Carlo simulation of the nematic-isotropic transition in an isothermal-isobaric ensemble

Abhijit Pal and Soumen Kumar Roy
Department of Physics, Jadavpur University, Calcutta 700032, India

~Received 25 April 2003; revised manuscript received 22 September 2003; published 27 February 2004!

Monte Carlo simulation of a system consisting of 512 cylindrically symmetric particles interacting with each
other via a potential which has an isotropic, density dependent part as well as an anisotropic part has been used
to simulate the nematic state. The usual Metropolis algorithm is used and the particles are allowed to have
translational degrees of freedom along with the orientational one. The simulation has been carried out in an
isothermal-isobaric (NPT) ensemble and the multiple histogram technique of Ferrenberg-Swendsen with ap-
propriate modification for theNPT ensemble has been used. The results reveal realistic values of the pseudo-
spinoidal temperature and pressure as well as that for the pressure dependence of the nematic-isotropic tran-
sition temperature.
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I. INTRODUCTION

The Maier-Saupe~MS! model @1# of nematic liquid crys-
tals has been successful in explaining the basic feature
the nematic-isotropic phase transition. The Lebwohl-Las
~LL ! model@2# is the lattice version of the MS model whe
the cylindrically symmetric particles are confined to the si
of a cubic lattice and interact with the nearest neighbors w
the Hamiltonian given by

H52e(
i , j

P2~cosu i j !, ~1!

whereP2 is the second Legendre polynomial andu i j is the
angle between the symmetry axes of the molecules at
nearest neighbor sitesi and j. The quantitye is a strength
factor. The LL model does not take into account the coupl
between the translational and the rotational degrees of f
dom between the molecules which is always present in a
nematic. In spite of this shortcoming, the LL model has be
investigated by a number of researchers. Fabbri and Zan
@3# have performed Monte Carlo~MC! simulation in this
model for a lattice size up to 303. Subsequently Zhanget al.
@4# investigated system size up to 283 using this model and
have performed finite size scaling to determine the therm
dynamic limit of the transition temperature. More recen
Priezjev and Pelcovits@5# worked on lattice of size up to 703

which vastly improved the statistics of the finite size scal
they performed.

One puzzling aspect of the nematic-isotropic~NI! transi-
tion has been the smallness of the quantityu(T22Tc)u/Tc ,
whereTc is the NI transition temperature andT2 is the limit
of supercooling of the isotropic liquid. Experimentally on
observes this quantity to be;0.1% while the theoretical pre
dictions @1# have been one or more orders of magnitu
higher. Zhanget al. @4# in their simulation on the LL mode
have estimated that this quantity is<0.5% which may be
termed moderately good. No estimate of this quantity
however available from the work of Priezjev and Pelcov
@5#.

Tao et al. @6# reported a work on an extended mean-fie
theory of the nematic-isotropic transition. These authors t
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into consideration an isotropic, density dependent compon
of the molecular interaction. This is an improvement over
MS theory which considers only the orientational part of t
interaction between the molecules and hence is unabl
predict the density variation observed at the NI transitio
Also no change inTc with pressure, which is easily observe
experimentally, is either explainable in terms of the M
theory. The inclusion of the density dependent, isotropic
teraction in the nematic Hamiltonian resulted in great i
provement in the predicted value ofu(T22Tc)u/Tc and the
right magnitude of the density variation atTc . Also the
theory resulted in a realistic prediction of the quant
dTc /dP, whereP is the pressure. It may be noted that the
improvements were made while still working within th
framework of the mean-field theory where the fluctuations
the neighborhood ofTc do not play a dominant role.

One motivation behind the present work has been to p
form MC simulation by including an isotropic, density de
pendent term in the Hamiltonian besides the usual an
tropic interaction where the particles are not fixed in a
lattice and are allowed to have translational degrees of f
dom. One can then see directly, without the approximati
intrinsic in the mean-field theory, the effect of inclusion
the isotropic part of the interaction on the different featu
of the nematic isotropic transition. For this purpose we ha
performed MC simulation in an isothermal-isobaric e
semble~NPTensemble! instead of the usualNVT ~canonical!
ensemble. This closely resembles the general experime
situation where the pressure is kept constant and the vol
is allowed to change freely. More than two decades a
Luckhurst and Romano@7# performed anNPT MC simula-
tion in a system consisting of 256 cylindrically symmetr
particles with an isotropic part included in the potent
which also consisted of an anisotropic part. The partic
were not confined to a lattice and were allowed to have tra
lational displacements in addition to the orientational o
Although the statistics of the work was not very good t
simulation exhibited a weakly first order nematic isotrop
transition.

We have performed theNPT MC simulation in a system
consisting of 512 particles where each particle was allow
to interact with all other particles. The particles were allow
©2004 The American Physical Society09-1
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to have translational degrees of freedom in addition to
usual orientational one. Although our system size is not v
large, the work involved a considerable amount of compu
tion as large number of interactions had to be taken car
and we have applied the multiple histogram reweighing te
nique which was first suggested by Ferrenberg and Swen
@8#. The method had to be slightly modified so as to ena
us to work in aNPT ensemble and the details are provid
in the following sections. Actually our work which is a
elaborated example of the application of multiple histogr
reweighing in aNPT ensemble, may be extended to perfo
more extensive and useful work in similar or other system
This is the other motive behind the present work.

II. THE POTENTIAL USED IN THE PROBLEM
AND DEFINITION OF RELATED THERMODYNAMIC

QUANTITIES

Monte Carlo simulation was performed in a system co
sisting of 512 particles using the usual Metropolis algorith
@9#. The potential used is of the form

U5U01Ua , ~2!

whereU0 is the isotropic part of the interaction and is not
ing but a Lennard-Jones~LJ! potential which can be written
as

U0~r i j !54e$~s/r i j !
122~s/r i j !

6%, ~3!

where r i j is the intermolecular separation between thei th
and j th particles respectively,s being the separation wher
U0 vanishes ande is the strength parameter. The anisotrop
part of the potential is taken as

Ua524le~s/r i j !
6P2~cosu i j !, ~4!

where P2(cosuij) is the second Legendre polynomial,u i j
being the angle between the symmetry axes of thei th andj th
particles,l is the anisotropic parameter whose value is c
sen to be 0.15. Such a value ofl has been found to be
optimum because smaller values ofl does not give rise to a
liquid crystalline phase above the melting point and
higher values an orientationally ordered phase is stable u
the boiling point@7#

We define the reduced internal energy per particleE* and
the reduced enthalpy per particleH* as

E* 5E/Ne, ~5!

H* 5E* 1P* V* , ~6!

where P* (5Ps3/e) and V* (5V/Ns3) are the reduced
pressure and reduced volume, respectively.e and s are the
parameters which appear in the Lennard-Jones potentia
Eq. ~3!. The specific heat per particle at constant pressur
given by

CP* 5
d

dT*
^H* &, ~7!
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which can also be evaluated from fluctuation as

CP* 5
~^H*

2
&2^H* &2!

T*
2 ~8!

whereT* (5kT/e) is the reduced temperature.
The isothermal compressibility is given by

KT* 52
1

V*

d

dT
^V* &. ~9!

The conventional long range order parameter is given by

^P2&5 1
2 ^3 cos2u21&, ~10!

whereu is the angle that a molecular symmetry axis mak
with the preferred direction of orientation which was o

FIG. 1. Histograms for reduced energy obtained in simulatio
~i!, ~ii !, and~iii !, respectively.
9-2
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MONTE CARLO SIMULATION OF THE NEMATIC- . . . PHYSICAL REVIEW E 69, 021709 ~2004!
tained by maximizinĝ P2& @3# and the average is over th
entire sample. The order parameter susceptibility is defi
in terms of the fluctuations of the order parameter^P2& as

x05
~^P2

2&2^P2&
2!

T*
. ~11!

The second rank angular correlation function is given by

G2~r i j !5^P2~cosu i j !& r i j
, ~12!

whereu i j is the angle between the symmetry axes betw
the i th and j th particles separated by a distancer i j . The
radial distribution function@10# g(r ) is defined as the prob
ability of finding a pair of particles at a distancer apart,
relative to the probability expected for a completely rand
distribution at the same density. It is nothing but the num

FIG. 2. Order parameter histograms for simulations~i!, ~ii !, and
~iii !, respectively.
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of atoms a distancer apart from a given atom compared wit
the number at the same distance in an ideal gas at the s
density.

III. COMPUTATIONAL DETAILS

In the simulation we have performed in an isotherm
isobaric (NPT) ensemble, the number of particlesN, pres-
sureP and temperatureT were kept fixed and the volumeV
of the system was allowed to change. ThusN particles are
placed in a cubic cell with the values of pressure and te
perature assigned. The configurational average of an obs
ableA is given by

^A&5

E
0

`

dV exp~2bPV!VNE drW A~rW !exp~2bU~rW !!

Z
,

~13!

whereZ is the configurational part of the partition functio
which can be written as

Z5E dV exp~2bPV!E drW exp@2bU~rW !#, ~14!

TABLE I. The autocorrelation times~in number of MC sweeps!
for reduced energy (E* ), order parameter (^P2&) and (V* ) for all
temperatures and pressures.

P* 50.1
T* 0.700 0.720 0.730 0.735 0.740 0.745 0.7
t(E* ) 2385 3006 6555 8163 8550 14522 2811
t(^P2&) 3602 4855 9456 10336 11994 18065 3833
t(V* ) 1800 2288 4564 6453 7867 9950 1598
T* 0.755 0.760 0.765 0.770 0.775 0.780
t(E* ) 23933 14578 6369 2166 1242 1011
t(^P2&) 29214 22653 13188 11142 8950 6859
t(V* ) 11056 6739 4367 2706 1731 1235

T* 50.77
P* 0.10 0.20 0.25 0.30 0.35 0.40
t(E* ) 2166 8127 25342 49253 63284 31466
t(^P2&) 11142 19272 38416 64453 78731 41825
t(V* ) 527 933 5282 11673 26835 18290
P* 0.45 0.50 0.60 0.70 0.80
t(E* ) 20167 16686 14147 13186 6618
t(^P2&) 29632 19613 18584 17180 8194
t(V* ) 10617 7268 5725 3914 1104

T* 51.0
P* 5.000 5.500 6.000 6.500 6.750 6.875
t(E* ) 1102 1419 3135 10451 11880 12725
t(^P2&) 3593 5784 8610 15047 16235 17659
t(V* ) 423 746 1178 2039 3157 5294
P* 7.000 7.250 7.500 7.600 7.750 7.900
t(E* ) 13946 11025 8983 7013 5930 5260
t(^P2&) 18497 14872 11345 10024 9047 8161
t(V* ) 9846 7102 4672 4103 3100 2478
9-3
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whereb51/KBT, KB is Boltzmann’s constant,V is the vol-
ume andU is the potential energy of the system.

The Metropolis algorithm is followed by generating
Markov chain in which a new state is generated by givin
particle a random translational and orientational displa
ment along with a volume change by changing the b
length randomly@10#. The changes in the box length is give
by

Ln5Lm1d l max~2jL21!. ~15!

The positional coordinates are then scaled according to
prescription given by

rW i ,n5rW i ,mLn /Lm , ~16!

wherei 51,512. Changes in the positional coordinates of
i th particle while going from thenth state to thekth state are
given by the prescription

rW i ,k5rW i ,n1dr max~2jW i21!. ~17!

While the changes in the orientational coordinates are gi
by

eW i ,k5eW i ,m1dumax~2jW i21! ~18!

where the components ofeW i are the normalized direction co
sines and those ofjW i are the random numbers in the interv
~0,1!. The values ofdr max, dumax andd l max are chosen so
as to make the acceptance-rejection ratio of the moves ne

FIG. 3. Reweighed values of reduced energy and reduced
thalpy for the simulations indicated. In~b! the lower scale and the
scale on the left correspond toT* 50.77 and the top scale and th
right scale correspond toT* 51.0.
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equal. The enthalpy change in moving from themth state to
the kth state,dHkm, is given by

dHkm5dUkm1P~Vk2Vm!2Nb21ln~Vk /Vm! ~19!

while the moves are accepted with a probability equal
min@1,exp(bdHkm)#.

Initially the 512 particles were placed on the sites of
simple cubic lattice, interacting through purely LJ potent
@Eq. ~3!# and the reduced pressureP* was set at 0.1. Each
particle in the box is allowed to interact with every oth
particle. A move was considered as the change in the par
coordinates along with with the change in the box leng
Metropolis algorithm was followed along with periodi
boundary conditions and minimum image conventions@10#.
Initially the system was heated toT* 53.0 and about 106

configurations per particle were generated for equilibrat
and to make the centers of mass of the particles random.
anisotropic part@Eq. ~4!# was added to the pure LJ intera
tion, keeping the symmetry axes of all the particles paral
The nematic sample was cooled toT* 50.7 and an equilibra-
tion run of length 107 configurations per particle was take
Then the system was heated in steps up toT* 50.78 and
equilibration runs of about same length were taken for e
temperature. The starting configuration for each tempera
was taken from the final configuration of preceding low
temperature. The histograms for energy, order parameter
volume were generated for each temperature.

n-

FIG. 4. Reweighed values of order parameter for the simulati
indicated. In~b! the lower scale and the top scale correspond
T* 50.77 andT* 51.0, respectively.
9-4
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MONTE CARLO SIMULATION OF THE NEMATIC- . . . PHYSICAL REVIEW E 69, 021709 ~2004!
The MC simulations for pressure variation were p
formed for two sets of temperatures. First, keeping the
duced temperatureT* 50.77 fixed, the reduced pressure w
increased fromP* 50.1 to P* 50.8. The system was the
heated to a higher temperatureT* 51.0 and keeping the tem
peratureT* 51.0 of the system fixed the reduced press
was increased fromP* 55.0 to P* 510.0. In both cases
equilibration runs of length 107 configurations per particle
were taken and for each pressure histograms for energy
der parameter and volume were generated. The starting
figurations at each pressure were taken from the final c
figurations of the preceding lower pressure.

The various thermodynamic quantities were computed
ing the histogram reweighing technique of Ferrenberg
Swendsen@8#. In this work we have applied the above me
tioned technique for the process involving temperature va
tion at a fixed pressure as well as the reverse process
summarize below the essential equations for the evalua
of various averages in our simulation.

In case of temperature variation where the pressure of
system is kept unchanged, suppose thatR Monte Carlo simu-
lations have been performed at temperaturesKn ,n
51, . . . ,R and the data has been stored as histogra
$Nn(E,V)%, with the total number of configurations isnn

5(n51
R Nn . We define a quantitygn5112tn , wheretn is

the autocorrelation time andK521/T where we have set th
Boltzmann constant equal to 1. Then the essential mult
histogram equation for the probabilityp(E,V,K) is written
as

FIG. 5. The free energyA plotted against reduced energy an
order parameter in simulation~i!.
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p~E,V,K !5

(
n51

R

gn
21Nn~E,V!exp@K~E1PV!#

(
m51

R

nmgm
21exp@Km~E1PV!2 f m#

, ~20!

where the free energyf n is given by

exp$ f n%5(
E

(
V

p~E,V,Kn! ~21!

the values off n could be obtained self-consistently by ite
ating Eq.~20! and ~21!. Either p(E,K) or p(V,K) can now
be obtained by summingp(E,V,K) over V or E, respec-

FIG. 6. The free energyA plotted against reduced energy an
order parameter in simulation~ii !.

TABLE II. Pseudospinoidal temperatures and pressures obta
from energy and order parameter data for simulation~i! and ~ii !.

P* 50.1

T from f vs E* from f vs ^P2&
Tc 0.7545 0.7539
T1 0.7553 0.7580
T2 0.7539 0.7500

T* 50.77

P from f vs E* from f vs ^P2&
Pc 0.373 0.345
P1 0.393 0.385
P2 0.365 0.319
9-5
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A. PAL AND S. K. ROY PHYSICAL REVIEW E69, 021709 ~2004!
tively, and the average value of any operator onE andV can
accordingly be evaluated as a function ofK.

In order to apply the multiple histogram reweighing tec
nique in case of the determination of the order param
^P2& the essential multiple histogram equation can be mo
fied as

p~E,V,^P2&,K !5

(
n51

R

gn
21Nn~E,V,^P2&!exp@K~E1PV!#

(
m51

R

gm
21exp@Km~E1PV!2 f m#

,

~22!

where the free energyf n is given as

exp$ f n%5(
E

(
V

(
^P2&

p~E,V,^P2&,Kn! ~23!

As above p(^P2&,K) can be obtained by summin
p(E,V,^P2&,K) over E andV .

In case of pressure variation where the temperature of
system is kept constant,R8 Monte Carlo simulations have
been performed at different pressuresPn8 ,n851, . . . ,R8.

FIG. 7. The specific heat at constant pressure plotted agains~a!
temperature and~b! pressure. In~a! the solid line represents theCP*
obtained fromdH* /dT* and the dashed curve is the same obtain
from fluctuations in enthalpy. In~b! the solid curve which repre
sents theCP* for T* 50.77 has the pressure given by the lower sc
while the dashed curve forT* 51.0 has the pressure given by th
upper scale.
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For the determination of the order parameter the esse
multiple histogram equation can be written as

p~E,V,^P2&,P!5

(
n851

R8

gn8
21Nn8~E,V,^P2&!exp@K~PV!#

(
m851

R8

nm8gm8
21exp@K~Pm8V!2 f m8#

,

~24!

where the free energyf n8 is given as

d

e

FIG. 8. The order parameter susceptibilityx0 plotted against~a!
temperature and~b! pressure. In~b! the lower scale is forT*
50.77 and the top one is forT* 51.0.

FIG. 9. The isothermal compressibilityKT plotted against pres-
sure. The lower scale and the scale on the left correspond toT*
50.77 and the top scale and right scale correspond toT* 51.0.
9-6
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exp$ f n8%5(
E

(
V

(
^P2&

p~E,V,^P2&,Pn8!. ~25!

IV. RESULT AND DISCUSSION

The Monte Carlo simulations we have performed ess
tially consist of three parts. In the first part~i! the reduced
pressure was kept fixed atP* 50.1 and the reduced temper
ture was varied fromT* 50.70 to 0.78. In all 13 tempera
tures were used for simulations in this range. The second~ii !
and the third~iii ! parts of the simulation involve variation o
pressure keeping the temperature fixed atT* 50.77 and 1.0,
respectively. The pressure was varied in the ranges 0.1 to
~11 values! and 5.0 to 7.9~12 values!, respectively. In each
simulation the histograms were generated for the redu
energyE* , the reduced volumeV* and the order paramete
^P2&. In Figs. 1 and 2 some of these histograms are sho
Figure 1~a! displays the histograms for the set~i! where the
pressure is held fixed atP* 50.1 and the histograms in th
neighborhood ofT* 50.75 show the evidence of samplin
between two phases. The situation is similar for the his
grams in Fig. 1~b! where the pressure is varied and the te
perature is kept fixed at 0.77. Figure 1~c! shows the energy
histograms forT* 51.0 and we note here that there is a lar
gap for the pressure between 7.9 and 8.0 and the histog
for P* 58.0 and 10.0 presumably represent the solidifi
phase which developed at high pressure. Figure 2~a! shows
the order parameter histograms forP* 50.1 where tempera
ture is varied. Figures 2~b! and 2~c! again show the orde
parameter histograms forT* 50.77 andT* 51.0 and here
pressure is the parameter which is varied.

In order to perform the multiple histogram reweighin
which we have already discussed in detail, it is necessar
determine the relevant auto-correlation times. We have de
mined these using the method outlined by Madras and S
@12# and the results are shown in Table I. Figure 3~a! and
3~b! show the reweighted energyE* and the enthalpyH* for

TABLE III. Transition temperatures and pressures obtained
different methods.

P* 50.1

dH* /dT* CP* (fluctuation) x0 d^P2&/dT*
Tc 0.7530 0.7501 0.7509 0.752

T* 50.77
CP* (fluctuation) x0 KT
Pc 0.454 0.397 0.388

T* 51.0
CP* (fluctuation) x0 KT
Pc 7.314 7.197 7.070

TABLE IV. The transition temperature at different pressures o
tained from the peak positions of the derivatives of enthalpy curv

T* P*
0.753 0.100
0.770 0.401
1.000 7.130
02170
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the simulations~i!, ~ii !, and~iii !, respectively while those for
the order parameter^P2& are depicted in Figs. 4~a! and 4~b!.
The error in estimating the probabilityp(S,K) in the histo-
grams is given by

dp~S,K !5F(
n

gn
21Nn~S!G21/2

p~S,K !, ~26!

with S being an observable like the energy, order parame
or the volume andgn52tn11, tn is the autocorrelation
time for thenth simulation. These errors have a peak va
;3% for Monte Carlo simulations~i! and~ii ! and;1.5% for
~iii !. For the order parameter and volume histograms the
rors are similar.

The free energy like quantityA which is equal to the
negative logarithm of the probabilityp(S) obtained from
reweighing, was also determined. It is well known in t
literature of the Monte Carlo simulation@11,13# that a double

FIG. 10. The radial distribution functiong(r ) for different tem-
peratures and pressures.
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A. PAL AND S. K. ROY PHYSICAL REVIEW E69, 021709 ~2004!
well structure of the quantityA characterizes a first orde
transition and the external parameters such as the temp
ture or pressure may be tuned to obtained the precise v
of the parameter where a phase transition takes place.
occurs when the two wells in the free energy like quantityA
are equally deep. Further information such as the pseu
spinoidal temperature or pressure~as the case may be! may
be obtained by fine tuning of the parameters so as to m
one of the minima ofA just disappear. In Figs. 5~a! and 5~b!
we have shown the plots of the quantityA obtained from the
energy and the order parameter histograms and have
determined the pseudospinoidal temperaturesT1 andT2. In
Figs. 6~a! and 6~b! are shown the identical quantities o
tained from the energy and order parameter histograms
the transition pressure as well as the pseudospinoidal p
sures were determined. The pseudospinoidal tempera
and pressures are listed in Table II.

The specific heat per particle at constant pressureCP* was
determined from the temperature derivative of the entha

FIG. 11. The angular correlation functionG2(r ) plotted up to
half the box length for a number of temperatures and pressure
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as well as from fluctuations of enthalpy and these are sho
in Fig. 7~a!. The peak positions which may be taken as t
transition temperatures,Tc50.7501 ~fluctuation! and Tc
50.7530~derivative!, differ by about 0.4%, while the pea
heights are not in good agreement with each other. The o
parameter susceptibilityx0 plotted againstT* for P* 50.1 is
shown in Fig. 8~a!. The peak position of this suggests a tra
sition temperatureTc50.7509.

CP* obtained from fluctuation forT* 50.77 andT* 51.0
are shown in Fig. 7~b!. The peak positions which indicate th
respective transition pressures are given byPc50.454 and
Pc57.314, respectively. The order parameter susceptib
x0 for T* 50.77 andT* 51.0 plotted against pressure
shown in Fig. 8~b! and the transition pressures are given
Pc50.397 andPc57.197, respectively. Finally the pressu
variation of the isothermal compressibilityKT for these two
temperatures are shown in Fig. 9 and these suggest the
sition pressures to bePc50.388 andPc57.070, respec-
tively. The transition temperatures and pressures are dep
in Table III. The significant difference in the transition pre
sures is believed to be due to finite size effects. It is expec
that in the thermodynamic limit the differences inPc* ob-
tained by different methods would tend to disappear.

We have evaluatedu(T62Tc)u/Tc from the knowledge of
the values of the transition temperature.u(T12Tc)u/Tc was
found to be 0.1% and 0.5% for the temperatures determi
from the energy and order parameter data whileu(T2

2Tc)u/Tc was found to be 0.08% and 0.5%, respective
The MS theory, it may be recalled, yields values of the
quantities to be;10% while the extended mean-field theo
of Tao et al. gives u(T22Tc)u/Tc;0.1%. In a similar fash-
ion we have also determinedu(P62Pc)u/Pc and these are
5.3% and 2.2% for energy data and 11.5% and 7.6% for
order parameter data respectively. To our knowledge, no
perimental results are available for these quantities and
are thus unable to compare these with that happens in
systems. From the results shown in Table IV, we have e
mated the pressure dependence of transition tempera
dT* /dP* turns out to be 0.0347, which when translated
dT/dP for N-cp-methoxybenzylidene-p-butylaniline
~MBBA ! ~for which s.0.8431029 m), turns out to be
;150 K/kbar. Although on the higher side this is of the sam
order of magnitude of what is found in most nematics v
30240 K/kbar.

The radial distribution function for simulations~i!, ~ii !,
and ~iii ! are shown in Fig. 10. It is evident from the resu
for T* 51.0 that the peaks ofg(r ) sharpen forP* >8.0 per-
haps indicating solidification of the sample. The plots of t
angular correlation functionG2(r ) for distances up to half
the box length are shown in Fig. 11. In Figs. 11~b! and 11~c!
it is seen that for low pressuresG2(r ) decays to zero indi-
cating loss of long range order while the order increases w
increase in pressure. ForT* 51.0 andP* 58.0 and 10.0 the
magnitude ofG2(r ) decreases very little and these pressu
presumably characterize the solidified phase.

V. CONCLUSION

In the isothermal-isobaric simulation we have perform
in the off-lattice model, which has closer resemblance wit
9-8



on

a

-
o

te

te
t

m
on

in
g
ie
ng
do

ted
g a

he
in

tic
ld.

iple
ble
NI
e

uld
sary
rd

to

MONTE CARLO SIMULATION OF THE NEMATIC- . . . PHYSICAL REVIEW E 69, 021709 ~2004!
real nematic than the simple Lebwohl-Lasher model has,
would expect that the values ofu(T62Tc)u/Tc should be
close to 0.1% as it happens in a real system. As we h
already mentioned, in their MC simulation Zhanget al. @4#
obtained values for these<0.5% using the simple Lebwohl
Lasher model. Our results from energy data yield values
0.1% and 0.08% foru(T12Tc)u/Tc and u(T22Tc)u/Tc, re-
spectively, which are good while those quantities evalua
from the order parameter give a somewhat higher value
0.5% for both the quantities. This may perhaps be attribu
to the small system size we have used. In order to test
finding of Taoet al. @6# that it is the density dependent ter
in the potential, rather than the fluctuations, which is resp
sible for the closeness ofT6 to Tc one must perform the
simulation using the method described in this paper us
bigger lattices and perhaps must do the finite size scalin
order to extract the thermodynamic limits of these quantit
It may however be pointed out in this context that Zha
et al. @4# got the above mentioned values of the pseu
spinoidal temperatures by using lattices of size up to 283 and
e

r.

02170
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d
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g
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then performing finite size scaling. It may therefore be sta
that the pseudospinoidal temperatures we obtained usin
single lattice of relatively much smaller size indicate that t
use of particles having translational degrees of freedom
theNPT ensemble is a far better approximation of a nema
than the Lebwohl-Lasher lattice model, as indeed it shou

We have thus demonstrated that the method of mult
histogram reweighing in an isothermal-isobaric ensem
can reveal a significant amount of information about the
transition. But in view of the huge amount of CPU tim
involved, to extend this work to bigger systems, one wo
need to truncate the range of interaction and apply neces
corrections for that. This is however fairly straightforwa
and should not cause any problem.
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